.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_0020_1d-barycenter.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_0020_1d-barycenter.py: 1d Barycenter with Sinkhorn =============================================================================== This example demonstrates on a simple 1-dimensional example the basic usage of the TSinkhornSolverBarycenter class for computing a Wasserstein barycenter with entropic regularization. .. GENERATED FROM PYTHON SOURCE LINES 7-41 .. code-block:: Python import matplotlib.pyplot as plt import numpy as np import scipy.sparse import MultiScaleOT # create a simple 1d grid on which our measures will live res=64 pos=np.arange(res,dtype=np.double).reshape((-1,1)) # create a bunch of Gaussian measures on this 1d grid listMean=[16.,32.,40.] listStdDev=[4.,10.,5.] muList=[np.exp(-0.5*((pos-mean)/stddev)**2).ravel() for mean,stddev in zip(listMean,listStdDev)] # normalize muList=[mu/np.sum(mu) for mu in muList] # weights for barycenter computation weightList=np.array([1.,1.,1.]) weightList=weightList/np.sum(weightList) nMarginals=weightList.shape[0] # Simple visualization for mu in muList: plt.plot(mu) plt.show() # generate uniform background measure, representing domain on which barycenter is searched muCenter=np.ones(pos.shape[0]) muCenter=muCenter/np.sum(muCenter) .. image-sg:: /auto_examples/images/sphx_glr_plot_0020_1d-barycenter_001.png :alt: plot 0020 1d barycenter :srcset: /auto_examples/images/sphx_glr_plot_0020_1d-barycenter_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 42-43 Now we generate the TMultiScaleSetup objects (one for each marginal measure and one for the center) .. GENERATED FROM PYTHON SOURCE LINES 43-57 .. code-block:: Python # determines how many layers the multiscale representation will have hierarchyDepth=6 # generate multi scale objects, do not allocate dual variable memory MultiScaleSetupList=[MultiScaleOT.TMultiScaleSetupGrid(mu,hierarchyDepth,setupDuals=False) for mu in muList] MultiScaleSetupCenter=MultiScaleOT.TMultiScaleSetupGrid(muCenter,hierarchyDepth,setupDuals=False) nLayers=MultiScaleSetupCenter.getNLayers() # list of cost function objects CostFunctionList=[MultiScaleOT.THierarchicalCostFunctionProvider_SquaredEuclidean(multiX,MultiScaleSetupCenter)\ for multiX in MultiScaleSetupList] .. GENERATED FROM PYTHON SOURCE LINES 58-59 Now we set up the barycenter container object: it is mostly useful for managing memory of dual variables .. GENERATED FROM PYTHON SOURCE LINES 59-77 .. code-block:: Python BarycenterContainer=MultiScaleOT.TMultiScaleSetupBarycenterContainer(nMarginals) # assign multi scale objects to barycenter object for i in range(nMarginals): BarycenterContainer.setMarginal(i,MultiScaleSetupList[i],weightList[i]) BarycenterContainer.setCenterMarginal(MultiScaleSetupCenter) # now allocate dual variables for barycenter problem. the memory is managed by the # TMultiScaleSetupBarycenterContainer object, not by the separate TMultiScaleSetup objects BarycenterContainer.setupDuals() # assign cost function objects to barycenter object for i in range(nMarginals): BarycenterContainer.setCostFunctionProvider(i,CostFunctionList[i]) .. GENERATED FROM PYTHON SOURCE LINES 78-79 A few other parameters .. GENERATED FROM PYTHON SOURCE LINES 79-85 .. code-block:: Python errorGoal=1E-3 cfg=MultiScaleOT.TSinkhornSolverParameters() epsScalingHandler=MultiScaleOT.TEpsScalingHandler() epsScalingHandler.setupGeometricMultiLayerB(nLayers,1.,4.,2,2) .. rst-class:: sphx-glr-script-out .. code-block:: none 0 .. GENERATED FROM PYTHON SOURCE LINES 86-87 If interested, turn this on .. GENERATED FROM PYTHON SOURCE LINES 87-90 .. code-block:: Python #MultiScaleOT.setVerboseMode(True) .. GENERATED FROM PYTHON SOURCE LINES 91-92 Create and initialize solver object, then solve .. GENERATED FROM PYTHON SOURCE LINES 92-98 .. code-block:: Python SinkhornSolver=MultiScaleOT.TSinkhornSolverBarycenter(epsScalingHandler,0,hierarchyDepth,errorGoal,\ BarycenterContainer,cfg) SinkhornSolver.initialize() SinkhornSolver.solve() .. rst-class:: sphx-glr-script-out .. code-block:: none 0 .. GENERATED FROM PYTHON SOURCE LINES 99-100 Extract and visualize all couplings .. GENERATED FROM PYTHON SOURCE LINES 100-114 .. code-block:: Python # extract all couplings couplingData=[SinkhornSolver.getKernelCSRDataTuple(i) for i in range(nMarginals)] couplings=[scipy.sparse.csr_matrix(cData,shape=(res,res)) for cData in couplingData] # plot all couplings fig=plt.figure() for i in range(nMarginals): fig.add_subplot(1,nMarginals,i+1) plt.imshow(couplings[i].toarray()) plt.axis('off') plt.tight_layout() plt.show() .. image-sg:: /auto_examples/images/sphx_glr_plot_0020_1d-barycenter_002.png :alt: plot 0020 1d barycenter :srcset: /auto_examples/images/sphx_glr_plot_0020_1d-barycenter_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 115-116 Extract all 2nd marginals (the ones corresponding to the barycenter) .. GENERATED FROM PYTHON SOURCE LINES 116-134 .. code-block:: Python innerMargs=[SinkhornSolver.getMarginalY(i) for i in range(nMarginals)] # visualize inner marginals (they should all be similar and close to the true barycenter upon successful solving) # NOTE: the final entropic regularization chosen here is 0.25 (see below) # which is substantially below the squared distance between two neighbouring pixels (which is 1) # therefore, the effect of regularization is already pretty weak, and we see discretization artifacts # which are particularly prominent in the barycenter problem # see [Cuturi, Peyre: A Smoothed Dual Approach for Variational Wasserstein Problems, DOI: 10.1137/15M1032600, # Figure 1 for an illustration. for i in range(nMarginals): plt.plot(innerMargs[i]) plt.show() # print finest eps value: epsList=epsScalingHandler.get() epsList[-1][-1] .. image-sg:: /auto_examples/images/sphx_glr_plot_0020_1d-barycenter_003.png :alt: plot 0020 1d barycenter :srcset: /auto_examples/images/sphx_glr_plot_0020_1d-barycenter_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none 0.25 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.167 seconds) .. _sphx_glr_download_auto_examples_plot_0020_1d-barycenter.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_0020_1d-barycenter.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_0020_1d-barycenter.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_0020_1d-barycenter.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_